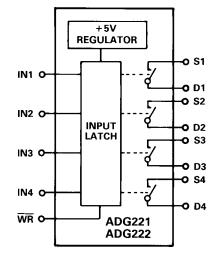
## ANALOG DEVICES


# LC<sup>2</sup>MOS Quad SPST Switches

## ADG221/ADG222

#### **FEATURES**

44V Supply Maximum Rating  $\pm$  15V Analog Signal Range Low R<sub>ON</sub> (60 $\Omega$ ) Low Leakage (0.5nA) Break-Before-Make Switching Extended Plastic Temperature Range (-40°C to +85°C) Low Power Dissipation (25.5mW)  $\mu$ P, TTL, CMOS Compatible Available in 16-Lead DIP/SOIC and 20-Lead PLCC/LCCC Packages Surface Mount Packages Superior DG221 Replacement

#### FUNCTIONAL BLOCK DIAGRAM



#### **GENERAL DESCRIPTION**

The ADG221 and ADG222 are monolithic CMOS devices comprising four independently selectable switches. On-chip latches facilitate microprocessor interfacing. They are designed on an enhanced LC<sup>2</sup>MOS process which gives an increased signal handling capability of  $\pm$  15V. These switches also feature high switching speeds and low R<sub>ON</sub>.

The ADG221 and ADG222 consist of four SPST switches. They differ only in that the digital control logic is inverted. All devices exhibit break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

#### **PRODUCT HIGHLIGHTS**

1. Easily Interfaced:

Digital inputs are latched with a  $\overline{WR}$  signal for microprocessor interfacing. A 5V regulated supply is internally generated permitting wider tolerances on the supplies without affecting the TTL digital input switching levels.

- Single Supply Operation: For applications where the analog signal is unipolar (0V to 15V), the switches can be operated from a single +15V supply.
- 3. Low Leakage:

Leakage currents in the range of 500pA make these switches suitable for high precision circuits. The added feature of Break-before-Make switching allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

| WR | ADG221<br>IN | ADG222<br>IN | SWITCH<br>CONDITION                  |
|----|--------------|--------------|--------------------------------------|
| 0  | 0            | 1            | ON                                   |
| 0  | 1            | 0            | OFF                                  |
| 1  | х            | X            | Retains Previous<br>Switch Condition |

Table I. Truth Table

#### REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel:
 617/329-4700

 Fax:
 617/326-8703

 Telex:
 924491

 Cable:
 ANALOG NORWOODMASS

## ADG221/ADG222 — SPECIFICATIONS ( $v_{DD} = +15V$ , $v_{SS} = -15V$ , unless otherwise specified)

|                                           | K Version |      | <b>B</b> Version |        | T Version |        |              |                                                                                                              |  |
|-------------------------------------------|-----------|------|------------------|--------|-----------|--------|--------------|--------------------------------------------------------------------------------------------------------------|--|
|                                           | -40°C to  |      | - 40°C to        |        | - 55°C to |        |              |                                                                                                              |  |
| Parameter                                 | 25°C      | +85℃ | 25°C             | + 85°C | 25°C      | +125°C | Units        | Test Conditions                                                                                              |  |
| ANALOG SWITCH                             |           |      |                  |        |           |        |              |                                                                                                              |  |
| Analog Signal Range                       | ±15       | ±15  | ±15              | ±15    | ±15       | ±15    | Volts        |                                                                                                              |  |
| R <sub>ON</sub>                           | 60        |      | 60               |        | 60        |        | Ωtyp         | $-10V \leq V_S \leq +10V$                                                                                    |  |
|                                           | 90        | 145  | 90               | 145    | 90        | 145    | $\Omega$ max | $I_{DS} = 1.0 \text{mA}$                                                                                     |  |
|                                           |           |      |                  |        |           |        |              | Test Circuit 1                                                                                               |  |
| $R_{ON}$ vs. $V_D(V_S)$                   | 20        |      | 20               |        | 20        |        | % typ        |                                                                                                              |  |
| R <sub>ON</sub> Drift                     | 0.5       |      | 0.5              |        | 0.5       |        | %/°C typ     |                                                                                                              |  |
| R <sub>ON</sub> Match                     | 5         |      | 5                |        | 5         |        | % typ        | $V_{S} = 0V, I_{DS} = 1mA$                                                                                   |  |
| I <sub>s</sub> (OFF)                      | 0.5       |      | 0.5              |        | 0.5       |        | nA typ       | $V_{\rm D} = \pm 14V; V_{\rm S} \mp 14V;$ Test Circuit 2                                                     |  |
|                                           | 1         | 100  | 2                | 100    |           | 100    | ••           | $\mathbf{v}_{\mathrm{D}} = \pm 14\mathbf{v}; \mathbf{v}_{\mathrm{S}} + 14\mathbf{v}; \text{ rest Circuit 2}$ |  |
| OFF Input Leakage                         | 2         | 100  |                  | 100    | 1         | 100    | nA max       |                                                                                                              |  |
| I <sub>D</sub> (OFF)                      | 0.5       |      | 0.5              |        | 0.5       |        | nA typ       | $V_D = \pm 14V; V_S = \mp 14V;$ Test Circuit 2                                                               |  |
| OFF Output Leakage                        | 2         | 100  | 2                | 100    | 1         | 100    | nA max       |                                                                                                              |  |
| I <sub>D</sub> (ON)                       | 0.5       |      | 0.5              |        | 0.5       |        | nA typ       | $V_D = \pm 14V$ ; Test Circuit 3                                                                             |  |
| ON Channel Leakage                        | 2         | 200  | 2                | 200    | 1         | 200    | nA max       |                                                                                                              |  |
| DIGITAL CONTROL                           |           |      |                  |        |           |        |              |                                                                                                              |  |
| V <sub>INH</sub> , Input High Voltage     |           | 2.4  |                  | 2.4    |           | 2.4    | Vmin         |                                                                                                              |  |
| V <sub>INI</sub> , Input Low Voltage      |           | 0.8  |                  | 0.8    |           | 0.8    | V max        |                                                                                                              |  |
| I <sub>INL</sub> or I <sub>INH</sub>      |           | 1    |                  | 1      |           | 1      | μA max       |                                                                                                              |  |
| DYNAMIC CHARACTERISTICS                   |           |      |                  | -      |           |        | -            |                                                                                                              |  |
| t <sub>OPEN</sub>                         | 30        |      | 30               |        | 30        |        | ns typ       |                                                                                                              |  |
| topen<br>ton                              | 300       |      | 300              |        | 300       |        | ns max       | Test Circuit 4                                                                                               |  |
| ton<br>t <sub>OFF</sub> <sup>1</sup>      | 250       |      | 250              |        | 250       |        | ns max       | Test Circuit 4                                                                                               |  |
| $t_{W}^{1}$ Write Pulse Width             | 250       | 100  | 250              | 100    | 100       | 120    | ns min       | See Figure 2                                                                                                 |  |
| $t_s^1$ Digital Input Setup Time          |           | 100  |                  | 100    | 100       | 120    | ns min       | See Figure 2                                                                                                 |  |
| $t_{\rm H}^{1}$ Digital Input Hold Time   |           | 20   |                  | 20     | 20        | 20     |              |                                                                                                              |  |
|                                           |           | 20   |                  | 20     |           | 20     | ns min       | See Figure 2                                                                                                 |  |
| OFF Isolation                             | 80        |      | 80               |        | 80        |        | dB typ       | $V_{s} = 10V(p-p); f = 100kHz$                                                                               |  |
|                                           |           |      |                  |        |           |        |              | $R_L = 75\Omega$ ; Test Circuit 6                                                                            |  |
| Channel-to-Channel Crosstalk              | 80        |      | 80               |        | 80        |        | dB typ       | Test Circuit 7                                                                                               |  |
| C <sub>S</sub> (OFF)                      | 5         |      | 5                |        | 5         |        | pF typ       |                                                                                                              |  |
| $C_{D}(OFF)$                              | 5         |      | 5                |        | 5         |        | pF typ       |                                                                                                              |  |
| $C_D, C_S(ON)$                            | 16        |      | 16               |        | 16        |        | pF typ       | ]                                                                                                            |  |
| C <sub>IN</sub> Digital Input Capacitance | 5         |      | 5                | Í      | 5         |        | pFtyp        |                                                                                                              |  |
| Q <sub>INJ</sub> Charge Injection         | 20        |      | 20               |        | 20        |        | pC typ       | $R_{s} = 0\Omega; C_{L} = 1000 pF; V_{s} = 0V$                                                               |  |
|                                           |           |      |                  |        |           |        | <b>.</b>     | Test Circuit 5                                                                                               |  |
| POWER SUPPLY                              |           |      |                  |        |           |        |              |                                                                                                              |  |
| I <sub>DD</sub>                           | 0.6       |      | 0.6              |        | 0.6       |        | mA typ       | Digital Inputs = $V_{INL}$ or $V_{INH}$                                                                      |  |
| I <sub>DD</sub>                           |           | 1.5  |                  | 1.5    |           | 1.5    | mA max       |                                                                                                              |  |
| I <sub>SS</sub>                           | 0.1       |      | 0.1              |        | 0.1       |        | mA typ       |                                                                                                              |  |
| I <sub>SS</sub>                           |           | 0.2  |                  | 0.2    |           | 0.2    | mA max       | 4                                                                                                            |  |
| Power Dissipation                         |           | 25.5 |                  | 25.5   |           | 25.5   | mW max       |                                                                                                              |  |

NOTE

<sup>1</sup>Sample tested at 25°C to ensure compliance.

 $t_{ON}$ ,  $t_{OFF}$  are the same for both IN and  $\overline{WR}$  digital input changes.

Specifications subject to change without notice.

#### ABSOLUTE MAXIMUM RATINGS\*

 $(T_A = +25^{\circ}C \text{ unless otherwise stated})$ 

| $V_{DD}$ to $V_{SS}$                                  | Power Dissipation (Any Package)                                                                                                         |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>DD</sub> to GND                                | Up to $+75^{\circ}$ C                                                                                                                   |
| $V_{SS}$ to GND                                       | Derates above $+75^{\circ}$ C by                                                                                                        |
| Analog Inputs <sup>1</sup>                            | Operating Temperature                                                                                                                   |
| Voltage at S, D $\ldots$                              | Commercial (K Version) $\ldots \ldots \ldots \ldots -40^{\circ}$ C to $+85^{\circ}$ C                                                   |
| $V_{DD} + 0.3V$                                       | Industrial (B Version)                                                                                                                  |
| Continuous Current, S or D                            | Extended (T Version)                                                                                                                    |
| Pulsed Current S or D                                 | Storage Temperature $\dots \dots \dots$ |
| 1ms Duration, 10% Duty Cycle 70mA                     | Lead Temperature (Soldering 10sec) + 300°C                                                                                              |
| Digital Inputs <sup>1</sup>                           |                                                                                                                                         |
| Voltage at IN, $\sqrt[3]{R}$ Voltage $V_{SS} = 2V$ to | NOTE                                                                                                                                    |
| $V_{DD} + 2V \text{ or}$                              | <sup>1</sup> Overvoltage at IN, $\overline{WR}$ , S or D will be clamped by diodes. Current should be                                   |
| 20mA, Whichever Occurs First                          | limited to the Maximum Rating above.                                                                                                    |

\*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

### ADG221/ADG222

#### CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

#### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature<br>Range                | Package<br>Option <sup>2</sup> |
|--------------------|-------------------------------------|--------------------------------|
| ADG221KN           | $-40^{\circ}$ C to $+85^{\circ}$ C  | N-16                           |
| ADG221KR           | $-40^{\circ}$ C to $+85^{\circ}$ C  | R-16A                          |
| ADG221KP           | $-40^{\circ}$ C to $+85^{\circ}$ C  | P-20A                          |
| ADG221BQ           | $-40^{\circ}$ C to $+85^{\circ}$ C  | Q-16                           |
| ADG221TQ           | $-55^{\circ}$ C to $+125^{\circ}$ C | Q-16                           |
| ADG221TE           | $-55^{\circ}$ C to $+125^{\circ}$ C | E-20A                          |
| ADG222KN           | $-40^{\circ}$ C to $+85^{\circ}$ C  | N-16                           |
| ADG222KR           | $-40^{\circ}$ C to $+85^{\circ}$ C  | R-16A                          |
| ADG222KP           | $-40^{\circ}$ C to $+85^{\circ}$ C  | P-20A                          |
| ADG222BQ           | $-40^{\circ}$ C to $+85^{\circ}$ C  | Q-16                           |
| ADG222TQ           | $-55^{\circ}$ C to $+125^{\circ}$ C | Q-16                           |
| ADG222TE           | $-55^{\circ}$ C to $+125^{\circ}$ C | E-20A                          |

#### NOTES

<sup>1</sup>To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers. See Analog Devices Military Products Databook (1990) for military data sheet.

 $^{2}N = Plastic DIP; R = 0.15'' Small Outline IC (SOIC); P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; E = Leadless Ceramic Chip Carrier (LCCC).$ 

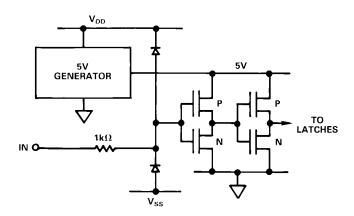
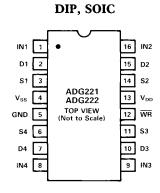
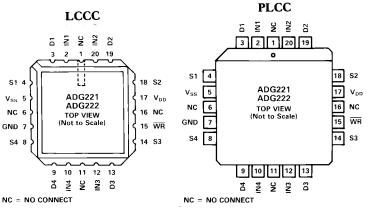





Figure 1. Typical Digital Input Cell

## WARNING! ESD SENSITIVE DEVICE

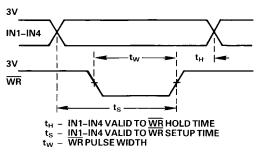
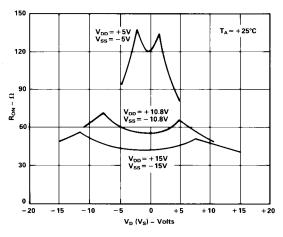
#### PIN CONFIGURATIONS

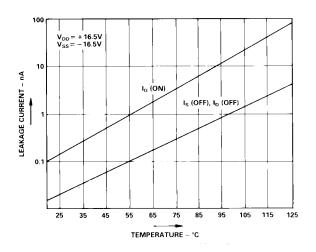




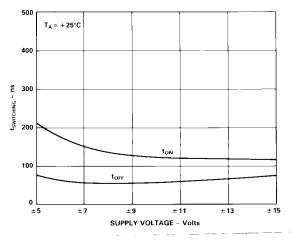
#### TIMING AND CONTROL SEQUENCE

Figure 2 shows the timing sequence for latching the switch digital inputs (IN1 – IN4). The latches are level sensitive and, therefore, while  $\overline{WR}$  is held low the latches are transparent and the switches respond to the digital inputs. The digital inputs are latched on the rising edge of  $\overline{WR}$ .

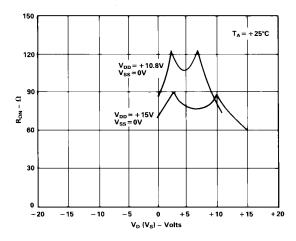





Figure 2. Timing and Control Sequence

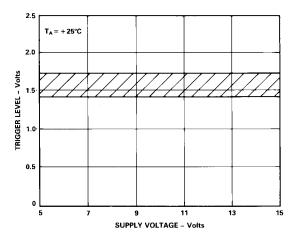
### ADG221/ADG222—Typical Performance Characteristics


The switches are guaranteed functional with reduced single or dual supplies down to 4.5V.

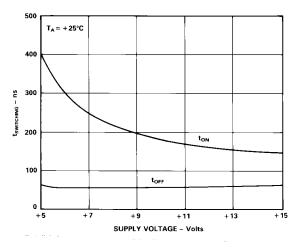



R<sub>ON</sub> as a Function of V<sub>D</sub> (V<sub>S</sub>): Dual Supply Voltage



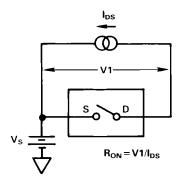

Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

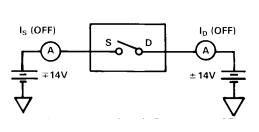


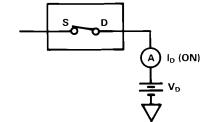

Switching Times vs. Supply Voltage (Dual Supply)



R<sub>ON</sub> as a Function of V<sub>D</sub> (V<sub>S</sub>): Single Supply Voltage



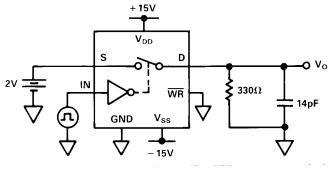


*Trigger Level vs. Power Supply Voltage: Dual or Single Supply Voltage* 

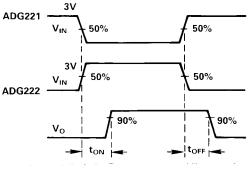



Switching Times vs. Supply Voltage (Single Supply)

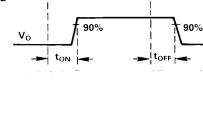
### Test Circuits — ADG221/ADG222

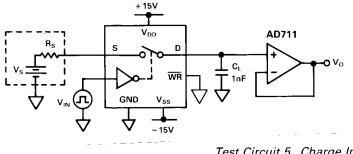


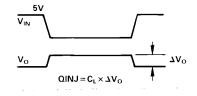


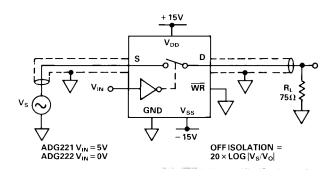

Test Circuit 1



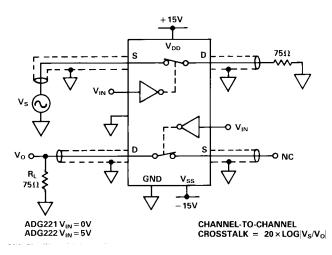


Test Circuit 3









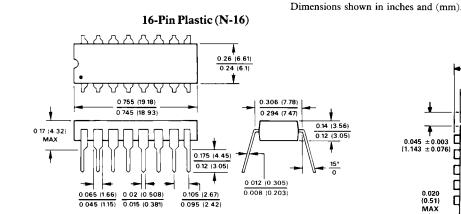

Test Circuit 5. Charge Injection



Test Circuit 6. Off Isolation

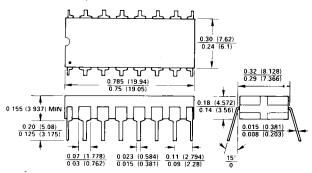


Test Circuit 7. Channel-to-Channel Crosstalk

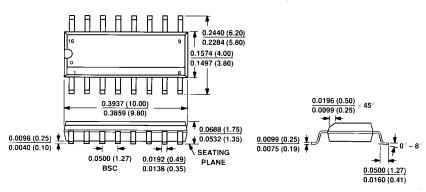

### ADG221/ADG222

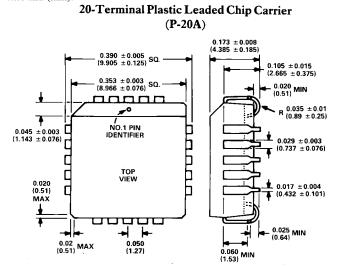
#### TERMINOLOGY

|                                             |  | 0.1                                                                                                                                   | 5                                                                                                                                                                                        |  |  |  |
|---------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $R_{ON}$<br>$R_{ON}$ Match<br>$I_{S}$ (OFF) |  | t <sub>off</sub><br>t <sub>open</sub>                                                                                                 | the digital input and switch "ON" condition<br>Delay time between the 50% and 90% points of<br>the digital input and switch "OFF" condition<br>"OFF" time measured between 50% points of |  |  |  |
| $I_{D}\left(OFF\right)$                     |  |                                                                                                                                       | both switches, which are connected as a multi-<br>plexer, when switching from one address state to<br>another<br>Maximum Input Voltage for a Logic Low                                   |  |  |  |
| $I_{D}\left(ON\right)$                      |  | V <sub>INL</sub><br>V <sub>INH</sub><br>I <sub>INL</sub> (I <sub>INH</sub> )<br>V <sub>DD</sub><br>V <sub>SS</sub><br>I <sub>DD</sub> |                                                                                                                                                                                          |  |  |  |
| $V_{\rm D}(V_{\rm S})$                      |  |                                                                                                                                       | Minimum Input Voltage for a Logic High<br>Input current of the digital input<br>Most positive voltage supply                                                                             |  |  |  |
| $C_{\rm S} (OFF)$<br>$C_{\rm D} (OFF)$      |  |                                                                                                                                       |                                                                                                                                                                                          |  |  |  |
| C <sub>IN</sub>                             |  |                                                                                                                                       | Most negative voltage supply<br>Positive supply current                                                                                                                                  |  |  |  |
| $C_D, C_S(ON)$                              |  | I <sub>SS</sub>                                                                                                                       | Negative supply current                                                                                                                                                                  |  |  |  |


ton

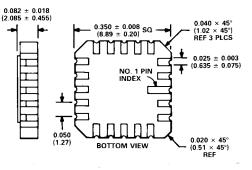
**OUTLINE DIMENSIONS** 




#### 16-Pin Cerdip (Q-16)




#### 16-Lead Narrow Body SOIC (R-16A)





Delay time between the 50% and 90% points of

#### 20-Terminal Leadless Ceramic Chip Carrier (E-20A)



### **Package/Price Information**

Quad SPST Switch with On-Chip Latches (Normally Closed Switch, Superior DG221 Replacement)

| Model         | Status     | Package<br>Description      | Pin<br>Count | Temperature<br>Range | Price*<br>(100-499) |  |
|---------------|------------|-----------------------------|--------------|----------------------|---------------------|--|
| ADG221BCHIPS  | PRODUCTION | CHIPS/DIE SALES             | 16           | INDUSTRIAL           | \$2.83              |  |
| ADG221BQ      | PRODUCTION | CERDIP GLASS SEAL           | 16           | INDUSTRIAL           | -                   |  |
| ADG221KN      | PRODUCTION | PLASTIC/EPOXY DIP           | 16           | COMMERCIAL           | \$1.74              |  |
| ADG221KP      | PRODUCTION | PLASTIC LEAD CHIP CARRIER   | 20           | COMMERCIAL           | -                   |  |
| ADG221KR      | PRODUCTION | SO NARROW .150" - 2mm thick | 16           | COMMERCIAL           | \$1.74              |  |
| ADG221TCHIPS  | PRODUCTION | CHIPS/DIE SALES             | 16           | MILITARY             | \$4.36              |  |
| ADG221TE      | PRODUCTION | CER. LEADLESS CHIP CARRIER  | 20           | MILITARY             | \$14.22             |  |
| ADG221TQ      | OBSOLETE   | CERDIP GLASS SEAL           | 16           | MILITARY             | -                   |  |
| ADG221TQ/883B | OBSOLETE   | CERDIP GLASS SEAL           | 16           | MILITARY             | -                   |  |

\* This price is provided for budgetary purposes as recommended list price in U.S. Dollars per unit in the stated volume. Pricing displayed for Evaluation Boards and Kits is based on 1-piece pricing. View <u>Pricing and Availability</u> for further information.